Városlista
2025. január 15, szerda - Lóránt

Hírek

2010. December 29. 15:23, szerda | Belföld
Forrás: Időkép

Kvantum-radar

Kvantum-radar

Közel másfél év után folytatjuk a "Fénynél is gyorsabban" c. cikkünket, nem kevés új meglepetéssel szolgálva. Figyelem! Egész estés olvasmány, kizárólag ínyenceknek és fanatikusoknak.


Figyelmeztetés!

Cikkünkkel most

Ahhoz, hogy esélyünk legyen elmerülni ebben a varázslatos világban, először is el kell felejtenünk szinte mindent, amit az objektív világegyetemről eddig tudunk, tudni véltünk, ill gondoltunk. Ezt már a "Fénynél is gyorsabban" c. írásunkban is javasoltuk, de ez most hatványozottan igaz az alább leírtakra. Talán a logikát és a kommunikáció alapjait megőrizhetjük, de ezeket is csak részben: kényszerből, fenntartásokkal - hamarosan megértjük, miért.

Hogy látjuk a világot?

Mi, emberek általában érzékszerveinkre támaszkodunk a külső világ megítélésében. Természetesnek vesszük például, hogy vannak körülöttünk tárgyak és más élőlények, relatíve jól meghatározható helyen és/vagy sebességgel mozogva; valamint vannak más emberek is, akik ugyanezeket a tárgyakat és élőlényeket nagyrészt ugyanolyannak és ugyanúgy látják és érzékelik, mint mi.



Ezen kívül szentül hiszünk olyan megkérdőjelezhetetlennek tekintett (ám tudományosan soha meg nem magyarázott, főleg nem bizonyított) fogalmakban, mint például az öntudat vagy a szabad akaratunk - és persze abban is, hogy minden más élőlény rendelkezik ugyanezen tulajdonságokkal, tőlünk függetlenül.

Bár mindezeket részben már a Heisenberg-féle határozatlansági teória és az Einstein által napvilágot látott relativitáselmélet is megkérdőjelezte; a kvantumfizika jelenségei alapjaiban ingatják meg erre épülő világképünket. Sőt, ha még pontosabbak akarunk lenni - gyakorlatilag nevetségessé teszik megfigyeléseinket és önértelmezésünket.

Mi a valóság?

A valóság - legalábbis ahogy a kvantumfizika jelenlegi kísérleti eredményei sugallják - még csak nem is hasonlít arra, amit vizuálisan érzékelünk.

Nincsenek például jól meghatározható helyzetű tárgyak, sem élőlények. Egyáltalán nem biztos, hogy az öntudatunk a sajátunk, és főleg nem, hogy a testünkhöz köthető. Nem biztos, hogy létezik szabad akarat, vagy ha mégis, akkor egészen másképp, mint ahogyan ma gondoljuk.

Nem biztos, hogy a fénysebesség az elérhető legnagyobb sebesség; nem biztos (sőt igen valószínűtlen), hogy csak 3 térdimenzió van, és hogy az idő bármiben is különbözik ezektől. Végül, nem biztos, hogy létezik egyáltalán olyan, hogy objektív világegyetem; vagy éppen megfigyelt pillanattól független jelen, jövő, vagy múlt.

Éppen ellenkezőleg, számtalan jel mutat arra, hogy a világegyetem részben vagy talán teljes egészében "szubjektív" hely: vagyis minden öntudattal rendelkező élőlénynek (még általánosabban: minden önmaga és a külvilág érzékelésére képes rendszernek) saját, egymásétól tetszőlegesen különböző világegyeteme van; az objektívnek hitt univerzum pedig talán csak ezek szuperpozíciója, amely csak azon pontokon és úgy kapcsolódik, illetve válik érzékelhetővé (megfigyelhetővé), a többi, öntudattal rendelkező rendszer (élőlény, vagy azok csoportja) számára, hogy ne okozzon paradoxont semmilyen szemlélő esetében sem.

És ami az egészben a legszebb (egyben tudományos hitelesség szempontjából legfontosabb), hogy mindezeket nem filozófusok álmodták meg a "semmiből". Éppen ellenkezőleg, szigorúan kontrollált körülmények között elvégzett kvantumfizikai kísérletek egész sora igazolja, illetve vetíti előre a döbbenetes állítások jelentős részének létjogosultságát.

És hogy mégis hogyan? Kezdjük az elejéről!

A legszebb kísérlet

Az ún. kétrés (double-slit) kísérletet, mint majdnem minden alapvető hullámfizikai jelenséget látványosan és döbbenetesen egyszerűen illusztrálni képes összeállítást az évtized első felében hivatalosan is a világ leggyönyörűbbjének választották ("The most beautiful experiment, Physics World, 2002 september").




Bár maga az elrendezés és annak folytonos fénnyel, valamint folyadékokkal (pl. hullámzó vízzel) elvégzett változatai évszázados múltra tekintenek vissza, a kétrés-jelenségek kvantumfizikai vizsgálata csak az utóbbi évtizedekben vált kivitelezhetővé a lézerek és a különleges optikai eszközök, mint például a fényrészecskék (fotonok) felbontására képes kristályok, prizmák fejlődése nyomán.




Mielőtt a kvantumfizika rejtelmeibe mélyednénk, vizsgáljuk meg még egyszer, hogyan is működik normál esetben ez az egyszerű összeállítás!

Két, egymástól nem túl távol lévő rést helyezünk koherens fényforrás, vagy akár vízben terjedő hullámok elé, és azt vizsgáljuk, hogy ezek milyen mintázatot alakítanak ki az átellenes oldalon lévő falon vagy képernyőn.

Hullámzó interferencia-csíkokat fogunk kapni, ami nagyon egyszerűen megérthető, ha modellezzük a két résen áthaladó fény, vagy vízhullámok útját. A két-két résen áthaladó hullámok az ernyő egyes pontjait elérve más-más hosszúságú utat járnak be, és emiatt eltérő fázisban érkeznek meg, így végső soron helyenként erősítik, másutt gyöngítik (vagy éppen teljesen kioltják) egymást.

Idáig tehát nem ért minket különösebb meglepetés; a jelenség a klasszikus fizikai jelenségek kivetítésével is tökéletesen érthető és megmagyarázható.

Ha viszont a kísérletet lézer vagy fény helyett elektron-nyalábbal végezzük el, akkor igen csak el kell, hogy csodálkozzunk - mivel a kapott eredmény akkor is ugyanilyen, hullámzó mintázat lesz (a kihalófélben lévő katódsugárcsöves TV-k elektronágyúja és fluoreszcens képernyője pont megfelel ehhez).

Itt válik érdekesé a dolog - az elektronok ugyanis a klasszikus fizikában például tömeggel és számtalan egyéb jól meghatározható jellemzővel rendelkező anyagi részecskék (ellentétben a fénnyel, amely legalább annyira hullám-természetű is). De akkor hogyan tudnak az elektron-nyaláb apró, anyagi részecskéi interferencia-csíkokat rajzolni a túloldalon lévő képernyőre?

A furcsa megfigyelésre adott legegyszerűbb magyarázatnak eleinte az tűnt, hogy a részecskék sokasága - a két résen való átrepülés során - kényszerűen olyan pályát vesz fel, amelyen egymásnak ütköznek, akár többször is, kitérítve egymást, és a folytonos kölcsönhatás miatt módosuló röppályák végső soron egymást befolyásolva hoznak létre sűrűbb és ritkább becsapódási mintázatokat az ernyőn.

Ez hihetőnek tűnt, egészen addig, amíg ki nem próbálták, hogy mi történik, ha egyszerre csak egyetlen egy elektront lőnek át a rendszeren - kizárva az egymást módosító nyalábok kölcsönhatásának lehetőségét. Teljes képtelenség, hogy interferencia-képet kapjunk - gondolhatnánk a klasszikus fizikát alapul véve. De mindig érhetnek meglepetések, ha túl biztosak vagyunk világképünkben.

Ahol a misztikum kezdődik

Egy elektron elméletileg egy nagyon-nagyon parányi elemi részecske - az általunk ismert anyagok miniatűr építőköve. Kizárt dolog, hogy egyszerre két különböző helyen legyen (mint például a kétrés kísérlet nyílásai), főleg ha azok a helyek milliószor távolabb vannak egymástól, mint az elektron mérete. Így az is kizárt dolog - gondolhatnánk - hogy mindkét résen egyszerre haladva át, önmagával interferáljon.

Nos, látszólag nem is ez történik, hanem valami még ennél is furcsább. Egy önálló elektron (és egy fény-foton is), a kétrés-kísérletben valójában mindig csak egyetlen, jól meghatározható (de előre ki nem számítható) helyen csapódik be a túloldalon lévő képernyőre. Nem hoz létre semmilyen mintázatot, csak egy pontot.

Az igazán elképesztő és klasszikus világképünkkel teljességgel megmagyarázhatatlan jelenség akkor válik megfigyelhetővé, ha egymás után sokszor megismételjük ugyanezt (tehát, hogy egy-egy önálló elektront, vagy fény-fotont lövünk át a kétrés-kísérletben). A sok száz, ezer vagy tízezer egyedi részecske végül - ha becsapódási pozícióikat összegezzük - kialakítják az interferenciaképet, vagyis azt a mintázatot, amihez elvben azonos és egyidejű forrású hullámok interferenciája szükséges.

Hogyan lehetséges ez? Eddigi világnézetünkkel - sehogy. Mégis megtörténik.

Bár a kísérlet annak idején kevés publicitást kapott, minden résztvevő tudóst ámulatba ejtett, és elgondolkodtatott azzal kapcsolatban, hogy valamit esetleg döbbenetesen félreértelmeztünk: eddig.

Be kell, hogy lássuk - igazuk van. De a rejtély még ennél is mélységesebb, ráadásul kényes, a tudomány által alig kezelhető kérdéseket vet fel, ha tovább vizsgálódunk.

Folytatás www.idokep.hu

Ezek érdekelhetnek még

2025. Január 15. 08:07, szerda | Belföld

Az északi országrészben havazik

Döntően borult időre számíthatunk többfelé - többnyire gyenge - havazással, hószállingózással, északnyugaton, nyugaton délután havas eső, eső is valószínű.

2025. Január 15. 08:00, szerda | Belföld

Nagy Márton szerint 2025 a családok és a vállalkozások éve lesz

A családok és a kis- és középvállalkozások (kkv) éve lesz 2025; a családoknál már érezhető a pozitív fordulat, a kkv-knál viszont még el kell indulnia a hitelezési fordulatnak

2025. Január 15. 08:00, szerda | Belföld

NAV: kedvezményesen 1,8 milliót adhat a munkáltató a harmincöt évnél fiatalabb dolgozóinak lakhatásra

A munkáltató 2025. január 1-től évente 1,8 millió forinttal támogathatja a harmincöt év alatti dolgozóinak lakhatását. Így az alkalmazottjának a lakásbérleti díjához vagy a lakáscélú hitelének törlesztőrészletéhez járulhat hozz

2025. Január 15. 07:59, szerda | Belföld

Lantos Csaba: a napelemek felfutása elképesztő, jönnek az új pályázatok

Hamarosan több mint 300 milliárd forintra nőhet az áramtárolás hazai támogatása, az idén számos nagy tárolót adhatnak át - egyebek között erről nyilatkozott a Világgazdaságnak Lantos Csaba energiaügyi miniszter.